The role of vision in odor-plume tracking by walking and flying insects.

نویسندگان

  • Mark A Willis
  • Jennifer L Avondet
  • Elizabeth Zheng
چکیده

The walking paths of male cockroaches, Periplaneta americana, tracking point-source plumes of female pheromone often appear similar in structure to those observed from flying male moths. Flying moths use visual-flow-field feedback of their movements to control steering and speed over the ground and to detect the wind speed and direction while tracking plumes of odors. Walking insects are also known to use flow field cues to steer their trajectories. Can the upwind steering we observe in plume-tracking walking male cockroaches be explained by visual-flow-field feedback, as in flying moths? To answer this question, we experimentally occluded the compound eyes and ocelli of virgin P. americana males, separately and in combination, and challenged them with different wind and odor environments in our laboratory wind tunnel. They were observed responding to: (1) still air and no odor, (2) wind and no odor, (3) a wind-borne point-source pheromone plume and (4) a wide pheromone plume in wind. If walking cockroaches require visual cues to control their steering with respect to their environment, we would expect their tracks to be less directed and more variable if they cannot see. Instead, we found few statistically significant differences among behaviors exhibited by intact control cockroaches or those with their eyes occluded, under any of our environmental conditions. Working towards our goal of a comprehensive understanding of chemo-orientation in insects, we then challenged flying and walking male moths to track pheromone plumes with and without visual feedback. Neither walking nor flying moths performed as well as walking cockroaches when there was no visual information available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Odor-modulated navigation in insects and artificial systems.

Two pieces of information are absolutely required to locate a source of chemicals from a distance. The first and most obvious is the presence of the chemical cue, and the second is the direction of the flow of air or water carrying the chemicals. Insects orienting to wind while walking in terrestrial environments appear to use the mechanical deflection of their antennae to detect the direction ...

متن کامل

Effects of altering flow and odor information on plume tracking behavior in walking cockroaches, Periplaneta americana (L.).

Animals using odor plumes to locate resources are activated to track these plumes by the presence of an attractive odor, and typically steer toward the source using directional cues from the flowing air or water bearing the odor. We challenged freely walking virgin male cockroaches, Periplaneta americana, to track plumes of airborne female pheromone and then video-recorded and analyzed their re...

متن کامل

Context-dependent olfactory enhancement of optomotor flight control in Drosophila.

Sensing and following the chemical plume of food odors is a fundamental challenge faced by many organisms. For flying insects, the task is complicated by wind that distorts the plume and buffets the fly. To maintain an upwind heading, and thus stabilize their orientation in a plume, insects such as flies and moths make use of strong context-specific visual equilibrium reflexes. For example, fly...

متن کامل

Flies Require Bilateral Sensory Input to Track Odor Gradients in Flight

Fruit flies make their living "on the fly" in search of attractive food odors. Flies balance the strength of self-induced bilateral visual motion and bilateral wind cues, but it is unknown whether they also use bilateral olfactory cues to track odors in flight. Tracking an odor gradient requires comparisons across spatially separated chemosensory organs and has been observed in several walking ...

متن کامل

History dependence in insect flight decisions during odor tracking

Natural decision-making often involves extended decision sequences in response to variable stimuli with complex structure. As an example, many animals follow odor plumes to locate food sources or mates, but turbulence breaks up the advected odor signal into intermittent filaments and puffs. This scenario provides an opportunity to ask how animals use sparse, instantaneous, and stochastic signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 214 Pt 24  شماره 

صفحات  -

تاریخ انتشار 2011